Bioinspired helical microswimmers based on vascular plants.
نویسندگان
چکیده
Plant-based bioinspired magnetically propelled helical microswimmers are described. The helical microstructures are derived from spiral water-conducting vessels of different plants, harnessing the intrinsic biological structures of nature. Geometric variables of the spiral vessels, such as the helix diameter and pitch, can be controlled by mechanical stretching for the precise fabrication and consistent performance of helical microswimmers. Xylem vessels of a wide variety of different plants have been evaluated for the consistency and reproducibility of their helical parameters. Sequential deposition of thin Ti and Ni layers directly on the spiral vessels, followed by dicing, leads to an extremely simple and cost-efficient mass-production of functional helical microswimmers. The resulting plant-based magnetic microswimmers display efficient propulsion, with a speed of over 250 μm/s, as well as powerful locomotion in biological media such as human serum. The influence of actuation frequencies on the swimming velocity is investigated. Such use of plant vessels results in significant savings in the processing costs and provides an extremely simple, cost-effective fabrication route for the large-scale production of helical magnetic swimmers.
منابع مشابه
Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers
Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswim...
متن کاملAcoustic actuation of bioinspired microswimmers.
Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the ac...
متن کاملVelocity Control with Gravity Compensation for Magnetic Helical Microswimmers
Magnetic helical microswimmers, which swim using a method inspired by the propulsion of bacterial flagella, are promising for use as untethered micromanipulators and as medical microrobots. Man-made devices are typically heavier than their fluid environment and consequently sink due to their own weight. To date, methods to compensate for gravitational effects have been ad hoc. In this paper, we...
متن کاملPhysics of microswimmers--single particle motion and collective behavior: a review.
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overc...
متن کاملMicrofluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella
Herein, we assess the functionality of magnetic helical microswimmers as basic tools for the manipulation of soft materials, including microdroplets and single cells. Their ability to perform a range of unit operations is evaluated and the operational challenges associated with their use are established. In addition, we also report on interactions observed between the head of such helical swimm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2014